АНАЛИТИЧЕСКИЙ ПОДХОД К РЕШЕНИЮ ОБРАТНОЙ ЗАДАЧИ ПРИ БИСТАТИЧЕСКОМ ЗОНДИРОВАНИИ МОРСКОЙ ПОВЕРХНОСТИ

2

3

Институт прикладной физики РАН, Нижний Новгород

Титченко Юрий А., Караев В.Ю.

АННОТАЦИЯ

Целью данной работы является расширение возможностей ранее развитого подхода к решению прямой и обратной задачи дистанционного зондирования морской поверхности на бистатический случай с движущимися приемником и излучателем.

В работе приведены формулы для расчета бистатического сечения рассеяния, ширины и смещения доплеровского спектра сигнала, отраженного морской поверхностью.

Особенностями подхода является включение в рассмотрение диаграмм направленности излучающей и приемной антенн, что позволяет получить аналитические формулы при решении обратной задачи, выбрав оптимальную схему измерений. Для описания морской поверхности используются статистические моменты второго порядка: дисперсии наклонов в двух взаимно перпендикулярных плоскостях, дисперсия вертикальной составляющей орбитальной скорости, коэффициенты корреляции между вертикальной составляющей орбитальной скорость и наклонами в одной из плоскостей, а также коэффициент корреляции между наклонами в двух взаимно перпендикулярных плоскостях.

 Приводится пример схемы измерений, для которой получаются аналитические выражения для восстановления всех статистических моментов второго порядка, описывающих морскую поверхность.

Результаты получены для сантиметровых волн излучения и могут применяться как в акустическом так и электромагнитном случае.

Бистатическое сечение рассеяния и ширина ДС полностью определяются параметрами отражающей поверхности и схемой измерения. Таким образом можно выбрать схему измерений для восстановления неизвестных параметров отражающей водной поверхности.

Рассмотрим некоторые зависимости характеристик рассеяния:

Зависимости получены для расстояния до излучателя 20000 км, дистанции до приемника 5 км, скорости излучателя 4 км/с и длины излученной волны 23 см.

ВВЕДЕНИЕ

원

Задача расчета спектральных и энергетических характеристик зеркально отраженного излучения в моностатической постановке задачи решается в нашей научной группе довольно давно.

Были получены выражения для сечения обратного рассеяния, ширины и смещения доплеровского спектра отраженного морской поверхностью излучения для моностатического зондирования с учетом скорости движения локатора.

Были показаны возможности решения обратной задачи по восстановлению неизвестных параметров волнения.

Особенностями разработанного подхода является описание водной поверхности 6 статистическими параметрами и учет диаграммы направленности антенн, в том числе и не симметричных.

Предложенный подход решения прямой и обратной задачи проверялся сравнением с результатами натурных измерений.

В данной работе рассмотрено применение данного подхода к бистатической постановке задачи с движущимися приемником и излучателем. Например эта схема измерений соответствует работе по анализу отраженного сигнала спутниковых навигационных систем (GNSS-R), стремительно развивающейся в последнее время.

РАССЕЯНИЕ ВОЛН ВЗВОЛНОВАННОЙ ВОДНОЙ ПОВЕРХНОСТЬЮ

Экспериментальные измерения показали, что при рассеяние акустических и электромагнитных волн морской поверхностью можно выделить четыре области. При отражение в зеркальном направлении рассеяние имеет квазизеркальный характер и хорошо описывается в приближении касательной плоскости (приближение Кирхгофа). При отклонении от зеркального направления более 30° доминирует резонансное рассеяние, описываемое методом возмущений (так называемое Брегговское рассеяние). В промежуточной области 15-30° для описания рассеяния необходимо учитывать оба эффекта одновременно. При затенениях и многократных переотражениях используют другие подходы.

В данной работе ограничимся квазизеркальной областью отражения где характеристики отраженного сигнала могут быть рассчитаны в приближении Кирхгофа (Метод касательной плоскости).

*R*oi - расстояние от источника (*i*=1) и приемника (*i*=2) до центра рассеивающей площадки (0,0,0);

 $R_{\rm i}$ - расстояние от текущей точки на поверхности $\zeta(\vec{r})$ до излучателя при *i*=1 или до приемника при *i*=2;

*G*ⁱ - нормированные гауссовы диаграммы направленности (ДН) антенн, задающие распределение амплитуды падающего (*i*=1) и отраженного (*i*=2) поля на поверхности *z0*= в зоне Фраунгофера:

$$G_i(x, y) = \exp\left\{-1.38\left(\frac{\sin^2 \psi_i}{R_{0i}^2 \delta_{xi}^2} x^2 + \frac{y^2}{R_{0i}^2 \delta_{yi}^2}\right)\right\}$$

δ_{xi} и δ_{yi} - ширины ДН антенн на уровне половинной мощности для приемной (*i*=2) и излучающей (*i*=2) антенн в двух взаимно перпендикулярных плоскостях.

Нормированное бистатическое сечение рассеяния вычисляется из корреляционной функции принятого поля:

ширины ДН антенн. В случае равных дистанций до приемника и излучателя эффективные ширины ДН являются гармоническим средним соответствующих ширин ДН. Так же в большинстве случаев работы с отраженным сигналом спутниковой навигации эффективные ширины ДН равны $C_{Rx} = \delta_{x2}^2$, $C_{Ry} = \delta_{y2}^2$; $\sigma_{xx}^2 = \left\langle \frac{\partial \varsigma}{\partial x}, \frac{\partial \varsigma}{\partial x} \right\rangle$, $\sigma_{yy}^2 = \left\langle \frac{\partial \varsigma}{\partial y}, \frac{\partial \varsigma}{\partial y} \right\rangle$ дисперсии наклонов в двух взаимно

 $\partial x = \langle \partial x, \partial x \rangle$, $\partial y = \langle \partial y, \partial y \rangle$, дисперсии наклонов в двух взаимне перпендикулярных плоскостях.

Доплеровский спектр (ДС) вычисляется как Фурье преобразование корреляционной функции принятого поля. Формула для ширины ДС на уровне-10 дБ от максимума: $\Delta f_{10} = \frac{4 \sin \psi \sqrt{2 \ln 10}}{2} \times$

Зависимости бистатического сечения рассеяния и ширины ДС от раскрыва симметричной ДН приемной антенны. Скорость приемника 100 м/с.

Увеличение ДН антенны приемника приводит к увеличению чувствительности ширины ДС к скоростям ветра. Одновременно увеличение ДН приемной антенны уменьшает чувствительность бистатического сечения рассеяния к скорости ветра.

Зависимости бистатического сечения рассеяния и ширины ДС от скорости ветра для различных приемных антенн ([раскрыв диаграммы вдоль оси X]x[раскрыв диаграммы вдоль оси Y]) и скользящего угла приема и излучения. Скорость приемника 4 км/с.

РЕШЕНИЕ ОБРАТНОЙ ЗАДАЧИ

Рассмотрим случай одной излучающей антенны и трех приемных с различными ДН. Одна из приемных антенн симметрична, а две другие ориентированы перпендикулярно друг другу, так чтобы:

4

5

6

$$C_{Rx}(1) = C_{Rx}(2), \quad C_{Ry}(1) \neq C_{Ry}(2),$$

$$C_{Rx}(1) \neq C_{Rx}(3), \quad C_{Ry}(1) = C_{Ry}(3)$$

Здесь и далее номер в скобках соответствует номеру приемной антенны. Начнем с анализа системы уравнений для бистатического сечения рассеяния. Для рассматриваемого случая можно выразить неизвестные следующим образом:

$$\sigma_{w}^{2} = \frac{C_{Ry}(2) - C_{Ry}(1) \left(\frac{\sigma_{0}(1)}{\sigma_{0}(2)}\right)^{2}}{(1 - 1)^{2}}$$

В результате, анализируя бистатическое сечение рассеяния, возможно восстановить дисперсии наклонов в двух взаимно перпендикулярных плоскостях и эффективный коэффициент отражения. Эффективный коэффициент отражения связан со скоростью приповерхностного ветра что может использоваться для оценки скоростей ветра.

Далее перейдем к анализу системы уравнений для ширин ДС. Дисперсия вертикальных скоростей и коэффициенты корреляции между наклонами и вертикальной скоростью вычисляются следующим образом:

Схема измерений

1 - точка излучения (передатчик); 2 -точка приема (приемник); $z = \zeta (\vec{r})$ - отражающая поверхность; ψ_1 and ψ_2 -скользящие углы излучения и приема;

Передатчик излучает сферическую волну с волновым числом $k = \frac{2\pi}{\lambda}$, где λ - длина волны излучения.

Рассмотрим несимметричную антенну ориентированную либо вдоль либо поперек направления распространения волнения.

В приближении Кирхгофа поле принятое в точке 2 может быть выражено с помощью функции Грина:

$$U(t) = \frac{U_0 q^2 V_{eff}}{4\pi i R_{01}^2 R_{02}^2 q_z} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} G_1(x, y) G_2(x, y) e^{ik(R_1 + R_2)} dx dy$$

*V*_{eff} - эффективный коэффициент отражения. Дополнительно к физическим параметрам сред на границе раздела он зависит от интенсивности мелкомасштабных поверхностных волн учитывая ослабление квазизеркальной компоненты за счет Брегговского рассеяния на мелкой ряби расположенной на крупных волнах;

- *U*₀ амплитуда излученного поля;
- $ec{q}=-2k
 abla R_{_{0}}$ вектор рассеяния;

 $C_{VR} = \left(\frac{\left(V_{x}\right)^{2}}{R_{01}^{2}\delta_{xus}^{2}} + \frac{\left(Vr_{x}\right)^{2}}{R_{02}^{2}\delta_{xnp}^{2}}\right)_{N} C_{VRx} = \frac{\left(V_{x}R_{02} + R_{01}Vr_{x}\right)^{2}\delta_{x2}^{2}\delta_{x1}^{2}}{R_{02}^{2}\delta_{x2}^{2} + R_{01}^{2}\delta_{x1}^{2}} - \text{Hekoto}$

коэффициэнты, зависящие от постановки задачи, в большинстве случаев - анализа спутниковых навигационных сигналов, равны

$$C_{VRx} = V r_x^2 \delta_{xnp}^2 \qquad C_{VR} = \frac{(V r_x)}{R_{02}^2 \delta_{xnp}^2}$$
$$\sigma_x^2 = \left\langle \frac{\partial \varsigma}{\partial \varsigma}, \frac{\partial \varsigma}{\partial \varsigma} \right\rangle$$

 $\sigma_{tt}^{2} = \left\langle \frac{\partial \varsigma}{\partial t}, \frac{\partial \varsigma}{\partial t} \right\rangle$ - дисперсия вертикальных скоростей отражающей поверхности;

 $K_{xt} = \left\langle \frac{\partial \varsigma}{\partial x}, \frac{\partial \varsigma}{\partial t} \right\rangle, \quad K_{yt} = \left\langle \frac{\partial \varsigma}{\partial y}, \frac{\partial \varsigma}{\partial t} \right\rangle$ коэффициенты корреляции между наклонами и вертикальной скоростью отражающей поверхности.

Выражение для смещения ДС выглядит следующим образом:

 $f_{sh} = \frac{\kappa}{2\pi} \cos\psi \left(V_x - V r_x \right)$

Смещение ДС при зеркальном отражении не зависит от параметров отражающей поверхности, поэтому эта характеристика не будет использоваться для решения обратной задачи в данной схеме измерений. Однако тот факт, что смещение зависит от разности скоростей приемника и излучателя, может использоваться в практических целях.

При расчете последних параметров используются вычисленные ранее значения дисперсии наклонов, таким образом, вычисление параметров волнение должно осуществляться последовательно.

В результате по измерениям бистатического сечения рассеяния и ширины доплеровского спектра с помощью трех приемных антенн возможно восстановить все неизвестные параметры взволнованной водной поверхности включая эффективный коэффициент отражения.

- Предлагаемый подход расчета характеристик отраженного в квазизеркальной области излучения позволяет создавать новые схемы измерений параметров водной поверхности в бистатической постановке задачи с движущимися приемником и излучателем.
- Полученные выражения для решения обратной задачи могут использоваться для расширения числа измеряемых параметров в перспективных системах бистатического дистанционного зондирования. Это могут быть подводные,

наземные, самолетные и космические системы. Полученные формулы применимы как к акустическому, так и к электромагнитному случаю без принципиальных изменений. Это приводит к тому, что с помощью акустических и электромагнитных локаторов могут измеряться одни те же характеристики волнения при выборе одинаковых длин волн.

Планируется использовать разработанный подход для анализа данных спутниковых навигационных систем.

БЛАГОДАРНОСТИ

выводы

Исследование выполнено за счет гранта Российского научного фонда (проект №17-77-10125)